ASTM E208
Drop Weight Test

Home
Charpy Testing
Drop Weight Testing
Dynamic Tear Testing
Fracture Toughness
Impact Testing
Instrumented Impact
Izod Testing
Mechanical Testing
 

Search WMT&R websites

This free script provided by
JavaScript Kit


 

 

The ASTM E208 drop weight test is used primarily to determine the Nil-ductility transition temperature or NDT of ferritic steels of 5/8 in thickness and over. This particular drop weight test was initially developed by the Navel Research Laboratory in 1952 and published as Department of the Navy document NAVSHIPS-250-634-3. Current specifications are available from ASTM at: ASTM E208-06 Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels.

     Nil-ductility transition temperature is the temperature at which the fracture mode of the steel changes from ductile to brittle. Above the NDT a piece of steel typically will stretch or deform 20% - 40% before fracture when loaded to its ultimate tensile strength. However, below the NDT the same piece of steel will fracture in a brittle manner like glass when only loaded to yield strength (about half of the ultimate strength). Once it begins to crack in this manner the crack will continue to propagate at the speed of sound. It will only stop when it runs out of steel, the load is released, or until the crack is interrupted by steel that is behaving in a ductile manner due to different qualities in the steel or different temperatures present.

     The drop-weight test consists of beam specimens prepared according to ASTM E208 specifications to initiate a material crack in a selected area of their tensile surfaces at the start of the test. During the test a series of specimens is subjected to a single impact load at a progression of selected temperatures to determine the maximum temperature at which a specimen breaks. The impact load is delivered by a guided, free-falling weight with an energy of 250 to 1200 ft-lb (340 to 1630 J) according to the yield strength of the steel to be tested. A stop is employed to prevent deflection of more than a few tenths of an inch.

     After the specimen is prepared properly for the  crack initiation, and conditioned to the proper temperature, the test begins. The initial test is conducted at a temperature estimated to be near the NDT temperature. The remaining specimens are then tested at a progression of temperature intervals to determine the break and no-break performance temperatures within 10°F or (5°C).

To discuss your Materials Testing needs with an engineer
Call WMT&R at: 724-537-3131

or Email: admin@wmtr.com, or on line: Quote Request   
2007/2009 Westmoreland Mechanical Testing & Research Inc. International - All Rights Reserved
Privacy Policy